• IT Specialist
  • Who I am
  • Blog

Kopfknacker

~ breaking my head...

Tag Archives: begreifen

Maschinen verstehen

06 Mittwoch Aug 2014

Posted by Christoph Diefenthal in Artificial Intelligence, Learning, Technologie

≈ 4 Comments

Tags

AI, begreifen, deeplearning, intelligenz, ki, lernen, machineintelligence, machinelearning, software, wissen

In den letzten Monaten habe ich mich viel mit Künstlicher Intelligenz beschäftigt und bin nach wie vor fasziniert von dem Thema – bzw den Themen, denn es gibt so viele verschiedene Technologien und Ansätze.

  • Eine sehr gute Einführung, die einem die Geschichte, die Ansätze und Einsatzbereiche der KI nahe bringt: „Künstliche Intelligenz“ von Günter Görz und Bernhard Nebel.
  • Tiefgehender ist der „Grundkurs künstliche Intelligenz“ Wolfgang Ertel.
  • Data Mining und Maschinelles Lernen nutzen teilweise die gleichen Technologien – von daher fand ich den Quereinstieg über „Data Analysis with Open Source Tools“ von Philipp K. Janert auch interessant – auch wenn ich es noch nicht anwenden konnte, glaube ich dass das Hintergrundwissen mit noch zu Gute kommt.
  • Web Data Mining von Bing Liu bietet noch weitere Methoden wie Association Rules zur Wissens-Generierung aus Daten, die ich sicher noch verwenden kann.
  • Hat man die Grundlagen verstanden, lohnt sich der kostenlose Online-Kurs von Andrew Ng sehr! Hier wird das Verständnis für Neuronale Netze aus den mathematischen Grundlagen und anhand von Programmier-Beispielen in Octave aufgebaut. Danach wir einem klar, wie „einfach“ die Algorithmen letztlich sind. Mit einfach meine ich, dass sie gar nicht so kompliziert sind, wie sie anfangs erscheinen – einfach heißt nicht dumm. Sie sind extrem leistungsfähig, und die Menschen, die sie erdacht haben sind äußerst gewitzt vorgegangen. Mein Respekt – aber auch Verständnis – für Mathematiker ist in dem Kurs nochmal gewachsen.

Allerdings bin ich auch ein wenig enttäuscht. Sicherlich habe ich bisher nur an der Oberfläche gekratzt, kenne nur die Werkzeuge und ich lasse mich gerne noch überraschen. Mein erster Eindruck ist aber, dass wir noch weit, weit, weit von einer „echten“ künstlichen Intelligenz – einer „starken KI“ entfernt sind, die einen Menschen in seinen Problemlösungs-Fähigkeiten und mit Bewusstsein nachbilden soll. Auf einer Skala von „normaler“ Software(1) bis „menschlicher“ Intelligenz(10) liegt die KI bei maximal 3 würde ich behaupten. Dafür hole ich ein wenig aus – hoffe ihr habt ein paar Minuten – aber es wird interessant – versprochen :-) Continue reading »

Big Data, Big Mind, Big Thinking

18 Mittwoch Jun 2014

Posted by Christoph Diefenthal in Artificial Intelligence, Learning, Technologie

≈ 1 Comment

Tags

AI, begreifen, intelligenz, ki, lernen

Es ist immer wieder schön, wenn man die eigenen Gedanken wiederfindet.

In What Am I Thinking About You? beschreibt Neurowissenschaftlerin Rebecca Saxe, wie eine „Theorie des Mind“1, die eine Maschine von uns entwickelt, Ihre Möglichkeiten uns zu verstehen steigern kann.

Ziele in anderen zu erkennen, ist dabei ein wichtiges Feature.

Ein Zweig der künstlichen Intelligenz-Forschung ist das Verstehen von menschlicher Sprache. Sentiment Analysis versucht bspw. anhand von Facebook und Twitter Kommentaren zu erkennen, ob wir bestimmte Produkte mögen oder nicht. 80% kann man schnell erschlagen, aber wenn jemand ironisch wird oder sein Missfallen in Übertreibung ausdrückt, dann kann das eine Maschine nur sehr schwer erkennen.

Big Data hilft hier weiter – man kann anhand statistischer Vergleiche in großen Datenmengen feststellen, ob ein ähnliches Kommentar eher eine Übertreibung oder Ironie ist. Aber das ist kein „Verständnis“. Komplett Neues – bspw. ein neuer Slang-Begriff wie „voll fett“ – wird dabei schnell als Missfallen interpretiert, wenn man die Hintergründe nicht kennt.

Nicht umsonst sagt Rebecca Saxe:

We can recognize and think about and reason through a literally infinite set of situations and goals and human minds. And yet we have a very particular and finite machinery to do that. So what are the right ingredients? … the human brain devotes a lot of resources to so-called social cognition

Um Neues beurteilen zu können, braucht auch eine Maschine eine „Theorie of Mind“ von Ihrem Gegenüber.

What were her goals? What did she want? What changed her mind? There are all kinds of features of that story that you were able to extract in the moment. If a computer could extract [such] features, we could [improve its ability to do] sentiment analysis.

Die Maschine muss erkennen können, was HINTER den Handlungen steckt. Sie muss Annahmen treffen, die zu Ihren Wahrnehmungen des Gegenüber passen.

Nichts anderes machen wir bspw., wenn uns jemand begegnet, von dem wir dachten, dass er traurig sein sollte. Er lacht! Unsere Wahrnehmung passt nicht zu unseren Annahmen. Wir müssen unser Model korrigieren, bzw müssen etwas neues postulieren, dass sie zum Lachen bringt. Etwas, von dem wir nicht wussten, dass es da ist.

My colleague Josh Tenenbaum and I have been working for years just to build a kind of mathematical representation of what it means to think of somebody as having a plan or a goal, such that this model can predict human judgments about the person’s goal in a really simple context. What do you need to know about a goal? We’re trying to build models that describe that knowledge.

Big Data kann das nicht!

This is not big data; it’s trying to describe the structure of the knowledge.

aber…

That’s always been viewed as an opposition: the people who want bigger data sets and the people who want the right knowledge structures. […] What used to be viewed as opposite traditions in AI should now be viewed as complementary, where you try to figure out probabilistic representations that learn from data.

Da bin ich einer Meinung. Big Data hilft bei einer Sortierung der Wahrnehmungen und kann alle Ereignisse in (vorher) angefertigte Kategorien stecken. Was fehlt ist der Abgleich mit einem Modell.

Nur wenn ich Annahmen treffe, wie die Welt aussieht, kann ich überhaupt merken, wenn sie nicht so aussieht.

  1. der“…Fähigkeit, eine Annahme über Bewusstseinsvorgänge in anderen Personen vorzunehmen und diese in der eigenen Person zu erkennen“ (wiki) [↩]

Turning Point für Turing Test?

11 Mittwoch Jun 2014

Posted by Christoph Diefenthal in Artificial Intelligence, Learning, Philosophical, Technologie

≈ 2 Comments

Tags

AI, begreifen, denken, intelligenz, ki, lernen, turing, verstehen

Nachdem mal wieder fast alle Medien auf den Zug aufgesprungen sind, ohne groß zu hinterfragen (klar, es geht ja um Klicks!), rudern sie nach einem Tag Recherche wieder zurück:

  • zeit.de 9.6.: Computerprogramm gaukelt erfolgreich Menschsein vor
  • zeit.de 10.6.: Ein Trickser namens Eugene Goostman

Ich war gespannt, als ich den ersten Artikel anklickte, aber leider konnte der Artikel meine Sensationslust nicht befriedigen… Tatsächlich gibt es genug Kritikpunkte an diesem speziellen Test. Und es gibt einige Kritik an Turing-Test selbst.

Worum gings im Turing Test?

Vor 50 Jahren wagte Turing für das Jahr 2000 die Prognose, dass ein Computer:

  • nach einer 5 minütigen Unterhaltung mit Mensch und Maschine,
  • bei reinem Schriftverkehr –  kein Sehen, Zeigen, Sprechen, etc –
  • bereits in 30% der Tests als Mensch durchgeht.1

Ein netter Wettbewerb, ein erster Schritt und schon schwer genug, wie man feststellt. Mit der Realität hat das aber wenig zu tun.

Eine weitere wichtige <implizite> Einschränkung im Turing-Test ist: die Versuchsteilnehmer WISSEN alle, dass sie beim Turing-Test mitmachen. Von daher ist durchaus vorstellbar, dass Menschen, die damit nicht rechnen, und die daher keine investigativen Fragen stellen, in Chats-Foren – auch länger als 5 Minuten – getäuscht werden.

Aber es gibt Wege dagegen anzugehen:

Turing Test für Spam-Bots

Turing Test für Spam-Bots, (von xkcd.com)

Lustig.

Continue reading »

  1. http://mind.oxfordjournals.org/content/LIX/236/433, Seite 442 [↩]

Delegieren an Mensch oder Maschine – wem vertraue ich mehr?

19 Dienstag Nov 2013

Posted by Christoph Diefenthal in Artificial Intelligence, Learning, Philosophical, Technologie

≈ 4 Comments

Tags

AI, begreifen, delegieren, entscheidung, intelligenz, ki, konzepte, lernen, motivation, vertrauen, ziel

Im Rahmen des Artikels zum Internet der Dinge unternahm ich einen kleinen Exkurs in den Unterschied von Maschinen und Menschen. Das Übertragen von komplexen Entscheidungskompetenzen an Computerprogramme halte ich für problematisch. Unerwartete Empfehlungen von Google Now, Autos mit Autopiloten und Börsenprogramme, die so schnell Kaufentscheidungen durchführen, dass wir sie nicht stoppen könnten, selbst wenn wir wollten. Sie haben alle das gleiche Problem: Die Entscheidungen sind nicht nachvollziehbar.

Continue reading »

Das kann man doch wohl erwarten!

19 Montag Aug 2013

Posted by Christoph Diefenthal in Leadership

≈ 4 Comments

Tags

begreifen, erwartungen, projektleitung

„Das kann man doch wohl erwarten!“ Ein Satz der letztens wieder einmal fiel. Hach ja, die Erwartungen. Ist es überhaupt möglich nichts zu erwarten? Ich glaube nein.

Jedes Wahrnehmen, Handeln und Verhalten ist immer schon Erwartung im Kontext meiner schon gemachten Erfahrungen. Ein keines fiktive Beispiel (das soll keine Ermunterung sein :-):

Ich halte einen kleinen Schwatz mit meinem Kollegen auf dem Gang vor der Türe zu meinem Büro. Ich sage „Bis später“ und drehe mich zu meiner Bürotür. Ohne hinzugucken greife ich nach der metallenen Türklinke. Da zucke ich überrascht zurück. Ich gucke mir angewidert in die Hand: Zahnpasta wurde unter die Klinke geschmiert. Mein Kollege bricht in Gelächter aus. Supersach!

Continue reading »

Absolute Beginner – Lernen mit Abstand

09 Sonntag Jun 2013

Posted by Christoph Diefenthal in Learning

≈ 3 Comments

Tags

anfänger, begreifen, konzepte, lernen, programmieren, software, softwareentwicklung

Das Tolle an einer abwechslungsreichen Arbeit ist, dass man verdammt viel daraus lernen kann. Da rattert soviel durch, dass ich manchmal den Drang spüre das ganze ein wenig zu strukturieren. Und das hier ist eines der Themen.

Praktikanten und Berufsanfänger in der Softwareentwicklung machen immer wieder ähnliche Fehler. Fehler an die ich mich auch aus meiner Anfangszeit noch dunkel erinnere. Zumindest weiß ich noch, wie ich das ein oder andere Aha-Erlebnis hatte. (Und zum Glück habe ich immer noch ständig welche :-)

Beim Strukturieren der Fehler wird schnell klar, dass der Aha-Moment in jedem Fall eine Art „Abstand nehmen“ ist. Jedes Mal geht man einen Schritt zurück und guckt sich das Ganze etwas globaler an. Und dann merkt man, dass man selber – oder die eigene Annahme – doch nicht der Mittelpunkt der Welt ist. 

Continue reading »

Das Blinkerproblem. Virtuell oder Real?

26 Sonntag Mai 2013

Posted by Christoph Diefenthal in User Interface

≈ 1 Comment

Tags

begreifen, multitouch, real, virtuell

Letztens auf unserer Urlaubsreise fiel es mir auf. Ich fahre nicht so oft Auto, deshalb war ich kurz verwirrt und amüsiert.  Ich bog blinkend auf einen Parkplatz ein. Der Blinker war noch an, als ich die Türe öffnete. Sofort kam das warnende Geräusch, dass der Schlüssel noch steckte. Und da war es: Oder vielmehr da war es nicht mehr! Obwohl der Blinker noch fröhlich blinkte war das wohlbekannte Klick-Klack nicht mehr zu hören – nur noch das „Schlüssel steckt“ Warnsignal. Faszinierend. Das Blinkgeräusch war nicht „echt“! Aber was heißt echt?

Continue reading »

Categories

  • Artificial Intelligence
  • Data Analytics
  • Innovation
  • Leadership
  • Learning
  • Motivation
  • Organisation
  • Philosophical
  • Technologie
  • Uncategorized
  • User Interface

Tags

3D 3D Drucker AI anfänger artificial intelligence aufmerksamkeit begreifen biblionetz blog deeplearning delegieren denkfehler dueck early adopters erfindung erwartungen führung gedanken gelassenheit hüther innovation intelligenz ki konstruktivismus konzepte lernen machinelearning motivation multitouch organisieren programmieren real schreiben sinek software softwareentwicklung statistik thebrain triz vertrauen virtuell wahrheit wissen worte zukunft

Last Posts

  • Auf zu neuen Welten
  • Neural Network – really easy explained – I mean: really!
  • Analysing DATA2 – Star Trek and Predict Who Said What via Multinomial Naive Bayes
  • Analyzing DATA – Pandas, Python and Star Trek: The Next Generation
  • No one can tell you you can’t learn about yourself!

Archive

  • September 2018
  • März 2016
  • Januar 2016
  • Oktober 2015
  • August 2015
  • Juni 2015
  • Februar 2015
  • Januar 2015
  • Dezember 2014
  • November 2014
  • September 2014
  • August 2014
  • Juli 2014
  • Juni 2014
  • März 2014
  • Februar 2014
  • Januar 2014
  • November 2013
  • Oktober 2013
  • August 2013
  • Juli 2013
  • Juni 2013
  • Mai 2013

Meta

  • Anmelden
  • Feed der Einträge
  • Kommentare-Feed
  • WordPress.org

Tweets

Meine Tweets

Proudly powered by WordPress Theme: Chateau by Ignacio Ricci.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.

Notwendig immer aktiv

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Nicht notwendig

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.