Tags

, , , ,

Es ist immer wieder schön, wenn man die eigenen Gedanken wiederfindet.

In What Am I Thinking About You? beschreibt Neurowissenschaftlerin Rebecca Saxe, wie eine „Theorie des Mind“1, die eine Maschine von uns entwickelt, Ihre Möglichkeiten uns zu verstehen steigern kann.

Ziele in anderen zu erkennen, ist dabei ein wichtiges Feature.

Ein Zweig der künstlichen Intelligenz-Forschung ist das Verstehen von menschlicher Sprache. Sentiment Analysis versucht bspw. anhand von Facebook und Twitter Kommentaren zu erkennen, ob wir bestimmte Produkte mögen oder nicht. 80% kann man schnell erschlagen, aber wenn jemand ironisch wird oder sein Missfallen in Übertreibung ausdrückt, dann kann das eine Maschine nur sehr schwer erkennen.

Big Data hilft hier weiter – man kann anhand statistischer Vergleiche in großen Datenmengen feststellen, ob ein ähnliches Kommentar eher eine Übertreibung oder Ironie ist. Aber das ist kein „Verständnis“. Komplett Neues – bspw. ein neuer Slang-Begriff wie „voll fett“ – wird dabei schnell als Missfallen interpretiert, wenn man die Hintergründe nicht kennt.

Nicht umsonst sagt Rebecca Saxe:

We can recognize and think about and reason through a literally infinite set of situations and goals and human minds. And yet we have a very particular and finite machinery to do that. So what are the right ingredients? … the human brain devotes a lot of resources to so-called social cognition

Um Neues beurteilen zu können, braucht auch eine Maschine eine „Theorie of Mind“ von Ihrem Gegenüber.

What were her goals? What did she want? What changed her mind? There are all kinds of features of that story that you were able to extract in the moment. If a computer could extract [such] features, we could [improve its ability to do] sentiment analysis.

Die Maschine muss erkennen können, was HINTER den Handlungen steckt. Sie muss Annahmen treffen, die zu Ihren Wahrnehmungen des Gegenüber passen.

Nichts anderes machen wir bspw., wenn uns jemand begegnet, von dem wir dachten, dass er traurig sein sollte. Er lacht! Unsere Wahrnehmung passt nicht zu unseren Annahmen. Wir müssen unser Model korrigieren, bzw müssen etwas neues postulieren, dass sie zum Lachen bringt. Etwas, von dem wir nicht wussten, dass es da ist.

My colleague Josh Tenenbaum and I have been working for years just to build a kind of mathematical representation of what it means to think of somebody as having a plan or a goal, such that this model can predict human judgments about the person’s goal in a really simple context. What do you need to know about a goal? We’re trying to build models that describe that knowledge.

Big Data kann das nicht!

This is not big data; it’s trying to describe the structure of the knowledge.

aber…

That’s always been viewed as an opposition: the people who want bigger data sets and the people who want the right knowledge structures. […] What used to be viewed as opposite traditions in AI should now be viewed as complementary, where you try to figure out probabilistic representations that learn from data.

Da bin ich einer Meinung. Big Data hilft bei einer Sortierung der Wahrnehmungen und kann alle Ereignisse in (vorher) angefertigte Kategorien stecken. Was fehlt ist der Abgleich mit einem Modell.

Nur wenn ich Annahmen treffe, wie die Welt aussieht, kann ich überhaupt merken, wenn sie nicht so aussieht.

  1. der“…Fähigkeit, eine Annahme über Bewusstseinsvorgänge in anderen Personen vorzunehmen und diese in der eigenen Person zu erkennen“ (wiki) []